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Abstract
The ideal free distribution in ecology was introduced by Fretwell and Lucas to model
the habitat selection of animal populations. In this paper, we revisit the concept via
a mean field game system with local coupling, which models a dynamic version of
the habitat selection game in ecology. We establish the existence of classical solution
of the ergodic mean field game system, including the case of heterogeneous diffusion
when the underlying domain is one-dimensional and further show that the population
density of agents converges to the ideal free distribution of the underlying habitat
selection game, as the cost of control tends to zero. Our analysis provides a derivation
of ideal free distribution in a dynamical context.
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1 Introduction

How organisms move to select their habitat is a central question in ecology. From
an evolutionary perspective, organisms tend to adopt strategies in order to optimize
their fitness (Haugen et al. 2006). The optimization viewpoint is applied extensively
in the study of how adaptation can occur in animal foraging behavior (Bartumeus
et al. 2031; Watanabe et al. 2014), in habitat choices (Křivan 1996), as well as in the
migration process of many organisms (Alerstam 2011; Yoshioka et al. 2019). In most
cases, it is far from a straightforward optimization problem of an individual navigating
in a static environment, given that environmental productivity and habitat suitability
depend on interactions between individuals inhabiting a given location. Hence, the
game theoretical framework (Smith and Price 1973) is widely applied, leading to the
search for Nash equilibria of a game with many players in which each player can
anticipate the average response of others, so as to adopt a best response strategy.

1.1 The Ideal Free Distribution

An important paradigm was presented by Fretwell and Lucas (1969); Fretwell (1972),
who introduced the ideal free distribution (IFD), which can be understood as a Nash
equilibrium concept in a habitat selection game (see Lemma 3.2). Their simplest
model predicts that as all individuals move around freely until they cannot do any
better in terms of obtaining resources, the local fitness of individuals will be equal in
all occupied habitats, whereas the local fitness in the unoccupied habitat is less than
or equal to the occupied ones (Holt and Barfield 2001). Later, Cressman and Křivan
(2006); Křivan et al. (2008) proved that the patch selection strategy producing an IFD
is an example of an evolutionarily stable strategy (ESS), i.e. a strategy which is stable
with respect to any other patch selection strategy.

More precisely, consider a smooth bounded spatial domain � and let F(x,m) be
the local fitness at location x , given the local population density m, and assume that
F(x,m) decreases in m. The theory of ideal free distribution predicts the following:

(I) Suppose the spatial location x is occupied while the location y is unoccupied, i.e.
m(x) > 0 while m(y) = 0. Then we must have F(x,m(x)) ≥ F(y,m(y)), for
individuals at location x would otherwise leave and move to location y;

(II) Suppose the spatial location x and y are occupied. Then local density must be
adjusted so that F(x,m(x)) = F(y,m(y)) for x, y ∈ {x ′ : m(x ′) > 0}.
In a different line of research focusing on the evolution of dispersal, Hastings

(Hastings 1983) showed that lower dispersal rates are selected among phenotypes
that are randomly dispersing in a spatially heterogeneous but temporally constant
environment, in the sense that for two phenotypes which are identical except for their
dispersal strategies, the one with lower dispersal rate always competitively ousts the
one with higher dispersal rate. See (Cantrell and Lam 2021; Dockery et al. 1998;
Lam and Lou 2024) for mathematical results in a more sophisticated context. A closer
examination of the results reveals that random dispersal creates a mismatch between
populationdistribution and the carrying capacity.Thismismatch allows for the possible
invasion by phenotypes with exotic dispersal strategies. In McPeek and Holt (1992),
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McPeek and Holt analyzed spatially discrete models and found that selection favors
dispersal strategies that do not create such mismatches. Later on, the evolutionary
stability of such strategies was proved in Cantrell et al. (2007) for spatially discrete
models, and in Cantrell et al. (2010) for reaction-diffusion-advection systems. It is
interesting to underline another point of Holt and Barfield (2001): many dispersal
behaviors, which are not necessarily ideal or free, can lead to an ideal free distribution.
Indeed, it was proved in Cantrell et al. (2007, 2010) that a class of dispersal behavior,
for which the movement of the organism only depends on local (but not global) spatial
information, is enough to produce IFD.

As aforementioned, the IFD can be regarded as the Nash equilibrium of a habitat
selection game, and as such it does not address the mechanisms and dynamics that
might lead to IFD. The analyses using the adaptive dynamics framework in Hastings
(1983); Cantrell et al. (2010) partially addressed this problem by showing that disper-
sal strategies producing IFD are both evolutionarily stable strategies (ESS), as well
as neighborhood invader strategies (NIS). Roughly speaking, a strategy is an ESS if
it is an evolutionary endpoint, while it is an NIS if phenotypes with such a dispersal
strategy (should they arise by random mutation) can always dominate and outcom-
pete whichever resident strategies that were present. Precisely, consider the following
reaction-diffusion-advection model

mt = div(μ∇m − �P(x)m)+ m(K (x)− m) for t > 0, x ∈ �, (1.1)

with no-flux boundary condition on ∂�, modeling a population densitym(x, t)whose
membersmovewith a combination of diffusionwith rateμ > 0 and a biasedmovement
following the vector field �P(x). Under the framework of adaptive dynamics, and by
regarding the vector field �P as strategy, it is proved that the set of evolutionarily
stable strategies coincides with those strategies �P whose corresponding stationary
distribution m̂(x) leads to equilibration of fitness, i.e.

F(x, m̂(x)) = K (x)− m̂(x) = constant.

Hence, it is necessary that the population distribution exactly matches the carrying
capacity K (x) at an ESS (Cantrell et al. 2010). (In principle we could consider other
general logistic-type growth rate where s �→ F(x, s) is strictly decreasing.) This is
also true when the environmental conditions vary periodically as well, under mild
conditions (Cantrell et al. 2021).

Besides the framework of adaptive dynamics, another explicit type of game dynam-
icswas introduced byTaylor and Jonker (1978). These dynamics, called the “replicator
equations", are constructed to model situations in which there is an instantaneous
change in the frequency of different strategies due to their differing relative fitness.
The Folk Theorem of this framework relates the dynamical stability of the replicator
equation with the Nash equilibrium property or evolutionary stability of a given strat-
egy. A wider class of dispersal dynamics, including best response dispersal strategies,
was considered by Křivan et al. (2008). Recently, Ambrosio et al. (2021) introduced
and proved the well-posedness of spatially heterogeneous replicator models in con-
tinuous space and derived the limit as the number of agents tends to infinity.
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1.2 Our main objective

In this paper, we interpret the framework of mean field games (MFG) in terms of
evolution of dispersal, in which individual movement is governed by a controlled
diffusion process so as to optimize an objective functional. The objective functional
incorporates the effect of the cost of control, the payoff function F(t, x) which is
perturbed by a mean field distribution m(t, x) of the conspecifics. For each fixed
cost of control, we will first develop the existence and uniqueness of solution of MFG,
which corresponds to the Nash equilibrium of themean field game. Next, wewill show
that as the cost of control/dispersal goes to zero, the overall population distribution
of individuals converges to the IFD. This provides a dynamical optimization through
which IFDcan be achieved. For the precise statement of ourmain results, seeTheorems
3.4 and 3.5.

1.3 Mean Field Games

The notion of MFG was considered in the economics literature by Jovanovic and
Rosenthal (1988), in the engineering literature by Huang et al. (2006), and indepen-
dently and around the same time by the mathematicians Lasry and Lions (2007). MFG
models are a set of PDEs used to approximate an infinite number of players behaving
as a Nash equilibrium with respect to a differential game. In the game, each individual
has knowledge of its own space-time coordinate, and the empirical distribution of the
other players. In contrast to existing adaptive dynamics models where one studies the
invasion of trait/phenotype by allowing (usually two) populations with prescribed dis-
persal strategies to compete (Hastings 1983; Dockery et al. 1998; Cantrell et al. 2010),
MFG focuses on the selection at the level of an individual, which is able to optimize its
performance as measured by a suitable payoff functional K (x) which is perturbed by
the mean field term m(t, x) representing the average behavior of the infinite number
of agents. Of course, the complexity of the differential game becomes intractable as
the number of individuals becomes large. Thus, MFG considers the special solutions
in which all the players are identical, meaning they are governed by an identical (albeit
independent) controlled diffusion process and are optimizing a symmetric objective.
In other words, MFG models symmetric Nash equilibria, where the average player
chooses a behavioral strategy which is optimal given mean field terms where all other
agents also adopt the given strategy. Roughly speaking, a typical individual in the
MFG solution uses both the information on (i) the net payoff function K (x) and (ii)
how the mean field distribution m(t, x) depends on the choice of individual feedback
control α(t, x), to adopt a control that is optimal (balancing the cost of control with
the perturbed payoff function F(t, x) = K (x) − m(t, x)) in anticipation of how the
entire population is expected to distribute in the future up to the terminal time. The
questions of existence, uniqueness and qualitative properties of this equilibrium are at
the core of the mathematical difficulties of MFG.

MFG has a number of applications in economic theory (Carmona 2020; Guéant
2009; Jovanovic and Rosenthal 1988), cryptocurrency and Bitcoin mining (Bertucci
et al. 2024) and financial engineering (Carmona et al. 2010). It is also applied to
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model biological phenomena such as animal swarming (Morale et al. 2005; Stella
et al. 2021) and diel migration in phytoplankton (Mazuryn and Thygesen 2023). For
the latter area, Thygesen and his coauthors developed a different approach to the
connection between the ideal free distribution and mean field games in Frølich and
Thygesen (2022) and applied it to predator-prey systems. Itsmathematical formulation
is more explicitly game theoretical than ours, in the spirit of Křivan et al. (2008),
and does not use the formulation of Lasry and Lions (2007) directly. The models in
Frølich and Thygesen (2022) assume that movement takes place on a fast timescale
so that it instantaneously reaches an equilibrium in space, as opposed to our starting
assumption of diffusive movement. The analysis in Frølich and Thygesen (2022) is
based on variational inequalities. Related ideas are developed in Frølich and Thygesen
(2022). In Thygesen and Mazuryn (2022) the authors formulate a mean field game for
the diel migration of copepods. They use an explicit formula for cost of motion and
note that any equilibrium in their model would correspond to an ideal free distribution.
In a later paper (Mazuryn and Thygesen 2023) they extend those ideas and derive a
system to characterize their mean field game which is similar to the one we will
consider analytically in this paper.

2 Model Formulation

Within the MFG framework we consider a population of individual agents who can
assess the quality of their surrounding environments, the spatial distribution of con-
specifics, and are able to move freely.

Mathematically, assume that a representative agent is governed by the following
controlled stochastic differential equation (SDE):

dXt = α(t, Xt )dt +
√
2μ(Xt )dBt , X0 = x ∈ � ⊆ R

d , (2.1)

where x is the initial state/location,αt = α(t, Xt ) represents the feedback control terms
and Bt is a standard Brownian motion with a state-dependent coefficient μ(x) which
is smooth and bounded from above and below by positive constants. More precisely,
the above SDE applies when Xt is in the interior of �, while on the boundary ∂� it is
reflected as modeled by a Skorokhod problem (Lions and Sznitman 1984), leading to
the no-flux boundary condition (2.3). Consistent with the notion of symmetric Nash
equilibrium, we assume that all agents are indistinguishable and follow the above SDE
with independent noise. Let a finite time horizon T > 0 be fixed; if every agent is
independent and is governed by the same diffusive law given above, the population
density mT (t, x) of agents is given by the forward Fokker-Planck equation (Pavliotis
2014):

∂tm = �(μm)− div(αm) in �× (0, T ), m(0, x) = m0(x) in �. (2.2)

with boundary condition (thanks to the Skorokhod formulation)

ν · (μ∇mT − mTα) = 0 on ∂�× (0, T ), (2.3)
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where ν is the unit outward normal vector on ∂�. The representative agent then seeks
to optimize a payoff functional J T (t, x;α) over a finite time horizon [0, T ], i.e.

uT (t, x) = inf
α
J T (t, x, ;α) (2.4)

where the payoff functional J T (t, x, ;α) depends on the behavior of the population
density mT of all players, in addition to other factors:

J T (t, x;α) = Et,x

{ˆ T

t

ε

2
|αs |2 − 1

ε
F(Xs,m

T (s, Xs)) ds + G(XT )

}
. (2.5)

Here we take a quadratic cost of control for simplicity, as it represents the square
of velocity, which represents the energy cost to implement the control (see further
discussion in Section 4.1), and α = {αs}s is a nonanticipative control process, i.e. for
each s, αs can depend on knowledge of the process {Xs′ }0≤s′≤s up to time s. Next, we
discuss the choice of our scaling factor ε in (2.5). First, note that the optimal control
α (that minimizes J T ) will not change even if we multiply J T by any function h(ε).
Hence ε is genuinely the ratio between the control cost running cost. The specific
choice of the coefficients ε

2 and 1
ε
is to prevent the value function from converging to

zero or infinity as ε → 0.
To derive the IFD, we will first let T →∞ to connect with the ergodic MFG and

then consider the limit ε → 0 when the cost of control becomes negligible. Further
discussion can be found in Section 4.

A typical choice of F(x,m) is given in logistic form:

F(x,m) = r(x)

(
1− m

K (x)

)
(2.6)

where r(x) and K (x) are the intrinsic growth rate and the carrying capacity, respec-
tively.When F is independent ofm, (2.4) becomes a typical stochastic optimal control
problem, and has been applied extensively in mathematical biology, such as in bird
migration (Alerstam 2011). Motivated by the differential games of many players, the
MFG formulation incorporates the consideration that each player is playing the field,
which means that the individual is optimizing its control strategy {αt }while anticipat-
ing the density mT (t, x) of other players.

By considering for the moment the density of mT (t, x) as given, and requiring
that the individual behavior is consistent with the payoff (t, x) �→ F(x,mT (t, x)),
it follows from classical theory (Fleming and Soner 2006) that the optimal control
is necessarily given as a feedback control proportional to the gradient of the value
function u

α = −1

ε
∇uT (t, Xt ) (2.7)

where uT (t, x) is the value function associated with this minimization (2.4), which
can be characterized as the unique viscosity solution to the Hamilton-Jacobi-Bellman
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equation

0 = max
α

[
−(uT )t − μ�uT − α · ∇uT − ε

2
|α|2 + 1

ε
F(x,mT (t, x))

]
.

The Hamilton-Jacobi-Bellman equation can be written as follows:

{
−(uT )t − μ�uT + 1

2ε |∇uT |2 + 1
ε
F(x,mT (t, x)) = 0 for t ∈ [0, T ], x ∈ �,

uT (T , x) = G(x) for x ∈ �.
(2.8)

Finally, the reflecting boundary condition of the diffusion process keeps the process
inside �̄, hence the value function satisfies the Neumann condition (Puterman 1977,
Theorem 4.1), which says that the controller cannot lower the cost by pushing the state
outside the domain:

ν · ∇uT = 0 for t ∈ (0, T ), x ∈ ∂�. (2.9)

Upon substituting (2.7) into (2.2) and (2.3), then combiningwith (2.8)-(2.9), we obtain
the finite horizon MFG model with local coupling (see Cardaliaguet and Porretta
2020):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t uT = −μ�uT + 1
2ε |∇uT |2 + 1

ε
F(x,mT (t, x)) for t ∈ [0, T ], x ∈ �,

∂tmT = �(μmT )+ div(mT ∇uT
ε

) for t ∈ [0, T ], x ∈ �,

ν · ∇uT = 0 for t ∈ [0, T ], x ∈ ∂�,

ν · (μ∇mT + mT ∇uT
ε

) = 0 for t ∈ [0, T ], x ∈ ∂�,

mT (0, x) = m0(x), uT (T , x) = G(x) for x ∈ �.

(2.10)

When the parameter ε > 0 (which appears originally in the cost functional in (2.5)) is
small, then the cost of control becomes small and the drift due to control dominates
over the standard noise due to diffusion in the Fokker-Planck equation governing the
population density mT (t, x). It is this combination of large and optimal drift and a
bounded diffusive movement that together enables the ideal free distribution.

2.1 The Stationary Problem

It is natural to investigate the behavior of theMFG system (2.10) as the horizon T tends
to infinity. In fact, it can be shown that the influence of the initial/terminal data (m0,G)

vanishes as T → ∞ (see Proposition 2.1 below), and that the long-time average
can be approximated by the following stationary ergodic problem with unknowns
(λ, u(x),m(x)). (For later purposes, we also denote the solution by (λε, uε,mε) to
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emphasize the dependence on ε.)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ− εμ�u + 1
2 |∇u|2 + F(x,m(x)) = 0 for x ∈ �,

−ε�(μm)− div (m∇u) = 0 for x ∈ �,

ν · ∇u = ν · [∇(μm)+ m∇u] = 0 for x ∈ ∂�,´
�
u dx = 0 and

´
�
m dx = m̄0 :=

´
�
m0 dx .

(2.11)

Here λ ∈ R is called the ergodic constant, or optimal long-time average reward.
This system is central in the study of the long-time behavior of MFG systems, and
has been the topic of a systematic study when μ is constant and when F satisfies
stronger regularity assumptions. The two main references are Cardaliaguet (2013);
Cardaliaguet et al. (2012). It is important to point out that in the first-order case,
that is, when ε = 0, the existence of solutions to the ergodic system under several
assumptions is linked to the weak KAM theory; we refer to Cardaliaguet (2013) for
a discussion of this aspect of the theory. In Appendix B, we provide some existence
results for the stationary problem. In caseμ is a constant, the existence of the solution is
due to Cardaliaguet et al. (2012). In this paper, we also derive the existence of classical
solutions when μ is nonconstant under the limitation that � is one-dimensional.

The ergodic system (2.11) can be interpreted as follows: each agent seeks to mini-
mize his/her ergodic cost u(x) = infα J (x, α), where J is the ergodic cost function

u(x) = inf
α
J (x, α) = inf

α
lim sup
T→∞

E

[
1

T

ˆ T

0

ε

2
|α(Xt )|2 − 1

ε
F(Xt ,m

(α)(Xt )) dt

]
,

where α = α(x) is a feedback control, and Xt is the solution to the SDE

dXt = α(Xt )dt +
√
2μ(Xt )dWt such that X0 = x,

and m(α)(x) is the stationary population density which satisfies

⎧
⎪⎨

⎪⎩

−�(μm)+ div(αm) = 0 in �,

ν · [∇(μm)+ αm] = 0 on ∂�,´
�
m dx = m̄0.

(2.12)

Here, we state a convergence result of the solution of (2.10) to that of the ergodic
problem (2.11). For convenience, we provide a version here and refer the reader to
( Cardaliaguet et al. (2012), Theorems 2.1 and 3.1) and (Cardaliaguet and Porretta
2020, Theorem 1.14) for more precise results. We need the monotonicity condition

(F1) F(x, s)− F(x, s′) ≥ 0 for x ∈ �, and s′ ≥ s.
(F2) F ∈ Liploc([0,∞) × �̄) and there is c1 > 0 such that F(x, s) − F(x, s′) ≥

c1(s′ − s) for x ∈ �, and s′ ≥ s.

Proposition 2.1 Let (λ, u(x),m(x)) ∈ R×C2+β(�̄)×C2+β(�̄) be a classical solu-
tion of the ergodic problem (2.11), and for each T > 0, let (uT (t, x),mT (t, x)) be a
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solution of (2.10) such that

m0,G ∈ C2(�̄) and inf
�

m0 > 0.

Define θT , νT : [0, 1] ×�→ R by

θT (s, x) = uT (sT , x) and νT (s, x) = mT (sT , x). (2.13)

(a) Suppose (F1) holds. Then

¨
(0,1)×�

(νT + m)|∇θT − ∇u|2 dxdt ≤ C

T
(2.14)

∣∣∣∣

¨
(0,1)×�

(−F(x, νT )+ F(x,m))(νT − m) dxdt

∣∣∣∣ ≤
C

T
for T ≥ 1. (2.15)

(b) Suppose (F2) holds. Then

‖νT − m‖L2((0;1)×�) + ‖∇θT − ∇u‖L2((0;1)×�) →
T→∞ 0. (2.16)

sup
0≤s≤1

∣∣∣∣
1

T

 
�

θT (s, x) dx − λ(1− s)

∣∣∣∣ →
T→∞ 0. (2.17)

(See Appendix A for the proof.)
In a certain sense, if individuals behave optimally, then we expect the overall popu-

lation to organize into a stationary distribution, i.e.mT (t, x) ≈ m(x) over a sufficiently
long time horizon. In the next section, we will characterize the population distribution
m(x) when the cost ε of control is small and connect it with the concept of the ideal
free distribution.

3 Deriving the ideal free distribution

It is sometimes mathematically more convenient to work with the following definition
of IFD as a variational inequality (Kinderlehrer and Stampacchia 2000), which implies
(I) and (II) in the introduction (see Lemma 3.2 below).

Definition 3.1 We say that a nonnegative function m̂ ∈ C(�̄) is an IFD if

ˆ
�

F(x, m̂(x))m(x) dx ≤
ˆ

�

F(x, m̂(x))m̂(x) dx (3.1)

for any 0 ≤ m ∈ L1(�) such that
´
�
m dx = ´

�
m̂ dx .

Here C(�̄) (resp L1(�)) denotes the class of functions which are continuous on �̄

(resp. integrable on �).
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The above characterization by a variational inequality is consistent with the notion
of IFD being the result of selection at the individual level. Indeed, suppose m̂(x) is
IFD, then one can regard the vast majority of individuals playing the mixed strategy
m̂(x) implying that the fitness of a typical individual is given by the right-hand side
of (3.1), which is necessarily greater than or equal to the fitness of an individual with
an arbitrary mixed strategy m(x), as given by the left-hand side of (3.1).

Also, Definition 3.1 is consistent with the general statement of what is meant by an
IFD, as outlined in (I) and (II) in the introduction, as is shown below.

Lemma 3.2 Suppose m̂ ∈ C(�̄). Then m̂ is an IFD according to Definition 3.1 if and
only if then there exists a constant c0 ∈ R such that

(i) F(x, m̂(x)) ≡ c0 is constant in supp m̂, and
(ii) F(x, m̂(x)) ≤ c0 for all x ∈ �.

Proof Without loss of generality, suppose
´
�
m̂ dx = 1. The “⇐” part of the assertion

is obvious, so we prove the “⇒" part below. Define

c0 =
ˆ

�

F(x, m̂(x))m̂(x) dx .

By letting a sequence of m = m j → δx ′ (the Dirac mass supported at x ′), we deduce
from (3.1) that

F(x ′, m̂(x ′)) ≤ c0 for each x ′ ∈ �. (3.2)

Next, multiply (3.2) by m̂(x ′) and integrate over �, we deduce that

c0 =
ˆ

�

F(x ′, m̂(x ′))m̂(x ′) dx ′ ≤
ˆ

�

c0m̂(x ′) dx ′ = c0.

Hence F(x ′, m̂(x ′)) = c0 for all x ′ ∈ supp m̂. ��
To keep the ideas clear, we assume hereafter the special case when F is given by

F(x, s) = K (x)− s, (3.3)

for some strictly positive function K ∈ C(�̄). 1

Remark 3.3 If F is given by (3.3), then m̂(x) is an IFD if and only if

m̂(x) = max{K (x)− λ̄, 0} for some λ̄ ∈ R,

which is as described by Fretwell and Lucas (1969). To see that, define λ̄ =´
F(x, m̄)m̄ dx , then by Lemma 3.2(i), m̄ = K − λ̄ in the support of m̄, and that

{m̄ ≡ 0} ⊂ {K ≤ λ̄}.
1 We remark that the same result holds true for themore general class of F(x, s)which is strictly decreasing
in s and such that s �→ F(x, s)+ λ has a unique root K (x, λ).
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Let (λε, uε(x),mε(x)) be a solution to the stationary system (2.11). Then mε(x)
represents the spatial population distribution as each individual behaves optimally
given the information (consisting of the carrying capacity K (x), and the distribution
of all playersmε(x)) and given the cost of control ε > 0. Furthermore, by Proposition
2.1, in any finite horizon MFG with T � 1, the population distribution of individuals
is approximately equal to mε(x) a.e. in [0, T ].

To derive the IFD, we consider the asymptotic limit when the cost of control tends
to zero, i.e. ε → 0. We begin with a general result that holds in all dimensions, but
only provides a weak convergence of (mε)ε>0 in the sense of measures.

Theorem 3.4 For any ε > 0 let (λε, uε(x),mε(x)) ∈ R×C2+β(�̄)×C2+β(�̄) be a
classical solution of (2.11). Then there exists λ̄ ∈ R such that

λε → λ and mε⇀
L2

max{K (x)− λ, 0} as ε → 0, (3.4)

which is the IFD accoring to Definition 3.1 above. Particularly, λ is determined by

ˆ
�

max{K (x)− λ̄, 0} dx = m̄0, (3.5)

and m̄0 is as given in (2.11).

In the next theorem, we will show the uniform convergence of (mε)ε>0, when μ is
constant or when � is one-dimensional.

Theorem 3.5 Let (λε, uε(x),mε(x)) ∈ R×C2+β(�̄)×C2+β(�̄) be a classical solu-
tion of the ergodic problem (2.11). Suppose that one of the following conditions holds.

(a) � is a smooth bounded domain in Rd for some d > 1 and μ(x) is constant in x.
(b) � = (0, 1);

Then as ε → 0,

λε → λ̄ and mε(x) → max{K (x)− λ̄, 0} uniformly in �. (3.6)

Here λ̄ is uniquely characterized by (3.5). In particular, K (x) − mε(x) tends to a
constant in the support of limmε .

Recall that (λε, uε,mε) represents a symmetric Nash equilibrium of the differential
game in which the individual payoff contains a mean field term mε . The above result
says that as the cost of the control tends to zero, then the symmetric Nash equilibrium
of the ergodic problem approaches the IFD (see Remark 3.3). Particularly, there exists
a constant c0 such that for each x ∈ �, one of the following holds:

• mε(x) → 0 as ε → 0;
• F(x,mε(x)) → c0 as ε → 0.

i.e. the fitness function F(x,mε(x)) becomes approximately constant in the support
of the population. Furthermore, a corresponding statement holds for the finite horizon
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problem as well, thanks to Proposition 2.1. This gives an alternative derivation of the
IFD via the framework of MFG in the stationary setting.

More generally, IFD can be observed in the MFG in the finite time horizon [0, T ]
with large enough T > 0 as well. Indeed, it follows from Proposition 2.1 that the
population mT (t, x) ≈ mε(x) for a.e. t ∈ [0, T ], except possibly near the initial and
terminal times, when the initial distribution m0 and the terminal payoff G(x) take
effect.

Before we prove these theorems in the next section, let us establish the following
a priori estimate.

Lemma 3.6 Let (λε, uε,mε) ∈ R×C2+β(�̄)×C2+β(�̄) be a solution of (2.11), then

|λε | +
ˆ

�

|∇uε |2 dx +
ˆ

�

|mε |2 dx ≤ 3

‖K‖L∞ + 2

m0 sup
�

μ

inf
�

μ
. (3.7)

Proof Using the uniform bound which is due to (B.8) in Remark B.3.

|λε | +
ˆ

�

|∇ūε |2 dx ≤ ‖K‖∞ +
m0 sup

�

μ

inf
�

μ
. (3.8)

Since uε is normalized by
´
�
uε dx = 0, then

sup
ε>0
‖uε‖H1(�) <∞. (3.9)

Second, multiplying the first equation of (2.11) by mε, integrating by parts and using
the second equation of (2.11), we obtain

ˆ
�

(mε)2 = λε +
ˆ

�

Kmε − 1

2

ˆ
�

|∇xu
ε|2mε ≤ ‖K‖L∞ + λε.

Combining with (3.8), we deduce (3.7). ��

Thanks to (3.7), we may pass to a subsequence, and there exists (λ̄, ū, m̄) ∈ R ×
H1(�)× L2(�) such that

λε → λ̄, uεH
1

⇀ū, and mε L2

⇀m̄. (3.10)
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3.1 Proof of Theorem 3.4

Let (λ̄, ū, m̄) ∈ R × H1(�) × L2(�) be a subsequential limit as given by (3.10).
Define the function

Gε : C2(�)× P(�) � (φ,m) �→
ˆ

�

(−εμ�φ + 1

2
|∇φ|2 + (K − mε))dm,

where in the case of m ∈ L1, we follow the convention that dm = m(x)dx . First of
all, by integrating the first equation of (2.11), we have

Gε(u
ε,m) = −λε = Gε(u

ε,mε) for all m ∈ P(�) ∩ C2(�). (3.11)

Second, for any φ ∈ C2(�), define z := φ − uε. Then

Gε(φ,mε)− Gε(u
ε,mε) =

ˆ
�

(−εμ�z + 〈∇z,∇uε〉)dmε + 1

2

ˆ
�

|∇z|2dmε

= 1

2

ˆ
�

|∇z|2dmε ≥ 0,

where the second equality follows from multiplying the second equation of (2.11) by
z and integrating by parts. We thus deduce that, for all (φ,m) ∈ C2(�)× P(�),

Gε(u
ε,m) ≤ Gε(u

ε,mε) ≤ Gε(φ,mε). (3.12)

Using ˆ
�

(m̄)2 ≤ lim inf
ε→0

ˆ
�

(mε)2,

which is a consequence of Fatou’s lemma, we deduce that

lim
ε→0

Gε(φ,mε) ≤
ˆ

�

(
1

2
|∇φ|2 + (K − m̄))m̄ for all φ ∈ C2(�). (3.13)

Furthermore, if m ∈ P(�) ∩ C2(�) is such that ν · ∇(μm) = 0 on ∂�,

lim
ε→0

Gε(u
ε,m) ≥ lim

ε→0

(ˆ
�

(K − mε)dm −
ˆ

�

uε(ε�(μm))

)
=
ˆ

�

(K − m̄)m.

(3.14)

Here, we used
´ |∇uε |2 dm ≥ 0 and integrated by parts. Hence, by taking φ = 1 and

combining (3.12), (3.13) and (3.14), we deduce that for any m ∈ P(�)∩C2(�) such
that ν · ∇(μm) = 0 on ∂�, there holds

ˆ
�

(K − m̄)m ≤ −λ0 ≤
ˆ

�

(K − m̄)m̄.
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By approximation, we observe that the above inequality holds for all m ∈ P(�). This
shows that m̄ satisfies the definition of an IFD. The rest follows from Lemma 3.2 and
the constraint

´
mε dx = m̄0 in (2.11).

3.2 Proof of Theorem 3.5(a)

In this section, we establish the uniform convergence of the ergodic measuremε to the
IFD as ε → 0, in the case of domains with dimension n ≥ 2 assuming the stronger
condition thatμ is constant. By scaling in x , wemay assumewithout loss of generality
that μ ≡ 1

2 , and (2.11) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λε − ε
2�uε + 1

2 |∇uε |2 + F(x,mε) = 0 for x ∈ �,

− ε
2�mε − div (mε∇uε) = 0 for x ∈ �,

ν · ∇uε = ν · ∇mε = 0 for x ∈ ∂�,´
�
uε dx = 0 and

´
�
mε dx = m̄0.

(3.15)

Observe that the Fokker-Planck equation implies that mε(x) can be expressed as a
Boltzmann distribution with Hamiltonian uε(x) and that a partition function C̄ , i.e.

mε(x) = C̄exp

(−2uε(x)

ε

)
, (3.16)

where the constant C̄ = m̄0

[´
�
exp

(−2uε (x)
ε

)
dx

]−1
is chosen to ensure

´
�
mε dx =

m̄0. This follows from the fact that both exp
(−2ū(x)

ε

)
and mε are positive eigenfunc-

tions of the same linear elliptic operator (corresponding to the zero eigenvalue), and
must be linearly dependent, thanks to the Krein-Rutman Theorem (Kreı̆n and Rutman
1950).

We take φε(x) = e−uε/ε and seek to solve the nonlinear eigenvalue problem

{
ε2�φε + 2

(
F

(
x, φ2

ε

)+ λ̄
)
φε = 0 in �,´

�
φ2

ε dx = m̄0 and n · ∇φε on ∂�.
(3.17)

To solve (3.17), we consider, for each ε > 0 and � ∈ R, the following semilinear
equation

{
ε2�w + 2

(
F(x, w2)+�

)
w = 0 in �,

n · ∇w = 0 on ∂�.
(3.18)
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Proposition 3.7 For each ε > 0 and � > �ε , (3.18) has a unique positive solution
wε,�, where �ε is the principal eigenvalue of

{
ε2�ϕ + 2

(
F(x, 0)+�

)
ϕ = 0 in �,

n · ∇ϕ = 0 on ∂�.
(3.19)

Furthermore,

(a) wε,�(x) < wε,�′(x) in �̄ if � < �′.
(b) wε,� ↘ 0 as �↘ �ε .
(c) There exists � > 0 independent of ε such that

´
�
|wε,�|2 dx > m0 for any ε > 0

and � ∈ [�,∞).

Proof Fix an arbitrary ε > 0. The existence of wε,� for � > �ε is classical (Cantrell
andCosner 2003; Lam andLou 2022). For (a), observe that for�′ > �,wε,�′ is a strict
supersolution of (3.18), so it follows by comparison (Lam and Lou 2022,Corollary
5.1.9) that wε,� < wε,�′ in �̄. This proves (a).

Thanks to (a), the family {wε,λ}�∈(�ε,�ε+1] is bounded in L∞(�). It follows by
elliptic L p estimates that this family is bounded inW 2,p(�) for any p > 1. By passing
to a subsequence, we may assume that wε,� → w̄ as � ↘ �ε weakly in W 2,p(�).
Moreover, the limit w̄ satisfies

ε2�w̄ + 2(F(x, 0)+�ε)w̄ = 2(F(x, 0)− F(x, w̄2)) ≥ 0 in � (3.20)

and the Neumann boundary condition on ∂�.
Next, multiplying both sides of (3.20) by principal eigenfunction ϕε > 0 of (3.19)

and integrating by parts, we deduce that

0 =
ˆ

�

ϕε(F(x, 0)− F(x, w̄2)) dx ≥ 0.

Since s �→ F(x, 0) is strictly decreasing, it follows that w̄ ≡ 0. This proves (b).
For (c), choose � = sup�

(−F(x, |m̄0|2/|�|)
)+ 1. Then one obtains that for each

� ∈ [�,∞) w = |�|−1/2m̄0 > 0 is a strict subsolution of (3.18). It follows from the
comparison principle ( Lam and Lou (2022), Corollary 5.1.9) that

wε,� ≥ |�|−1/2m0 in � for � ∈ [�,∞).

This proves (c). ��
Proposition 3.8 For each ε > 0, the nonlinear eigenvalue problem (3.17) has a unique
solution (λε, φε).

Proof Let ε > 0 be fixed. By Lemma 3.7, there exists a unique � such that´
�

w2
ε,� dx = 1. It follows that (λε, φε) = (�,wε,�) exists, and is uniquely deter-

mined. ��
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Proof of Theorem 3.5(a) For j ∈ N, let (λ j , u j ,m j ) be the solution of (3.15) with
ε = ε j → 0. By Lemma 3.7, λ j is the unique number in (�ε,�) such that

ˆ
�

|w j |2 dx = m̄0 where w j = wε j ,λ j ,

and that

(u j ,m j ) = (−ε logw j , w
2
j ).

Next, we claim that

|λ j | + sup
�

|w j | ≤ C for some C independent of j .

Indeed, λ j ∈ (�ε,�) is uniformly bounded from above by Proposition 3.7(c). Also,
since the lower bound satisfies �ε → − sup� F(·, 0) as ε → 0 (see, e.g. Lam and
Lou 2022,Proposition 1.3.16), it follows that {λ j } is uniformly bounded.

Since sup� F(·, M0) → −∞ as M0 → +∞, we can obtain that w = wε j ,λ j is
also bounded from above. Indeed, let�2 be an upper bound of λ j , and choose M2 ≥ 1
such that F(x, M2) + �2 ≤ 0, then one can argue similarly as Lemma 3.7(c) that
wε j ,λ j ≤ M2. This means m j = w2

ε j ,λ j
is bounded from above uniformly in j .

Since {λ j } is a bounded sequence, wemay pass to a further subsequence and assume
that λ j → λ̄. It follows that, for each δ > 0,

lim
ε j→0

wε j ,λ̄−δ ≤ lim inf
j

w j ≤ lim sup
j

w j ≤ lim
ε j→0

wε j ,λ̄+δ. (3.21)

By ( Lam and Lou (2022), Theorem 5.2.5), it holds that

lim
ε j→0

wε j ,λ̄+δ = max{0, K (x)+ λ̄± δ} uniformly in �̄.

Hence, (3.21) becomes

max{0, K (x)+ λ̄− δ} ≤ lim inf
j

w j ≤ lim sup
j

w j ≤ max{0, K (x)+ λ̄+ δ}

uniformly in �̄. Since δ > 0 is arbitrary, we may let δ ↘ 0. This proves the conver-
gence of m j → max{K (x)− λ̄, 0}. Using the constraint ´

�
m j dx = m̄0, we deduce

that the limit value λ̄ is independent of subsequence, and so the convergence holds for
the full limit as ε → 0. This concludes the proof. ��
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3.3 Proof of Theorem 3.5(b)

By the bounds in Remark B.3, we can pass to a subsequence and suppose

λε → λ̄ and uε → ū weakly in H1. (3.22)

Since μ(x) is nonconstant, mε can no longer be solved explicitly in terms of uε as
in (3.16). We need the following lemma instead.

Lemma 3.9 Fix ε > 0.

(a) Suppose mε > K̄ +λε in (a, b), thenμmε cannot have a local maximum in (a, b).
(b) Suppose mε < K̄ +λε in (a, b), then μmε cannot have a local minimum in (a, b).

Proof We prove (a), and omit the proof of (b) as can be proved in a similar manner.
First, by the no-flux boundary condition, we may integrate the second equation of

the ergodic problem (2.11) (under the assumption that � = (0, 1)) from 0 to x to
obtain

ε(μmε)x = −mεux (3.23)

Next, observe from the first equation of (2.11) that uε cannot have a local min-
imum in (a, b). Therefore, either uε is strictly monotone in (a, b), or there exists
c ∈ (a, b) such that uε is strictly increasing in (a, c) and strictly decreasing in (c, b).
The conclusion follows from (3.23). ��
Lemma 3.10 (Uniform L∞ upper bound of m)

0 ≤ μmε ≤ ‖μ(K + λε)‖L∞(�) + m̄0

|�| for all x ∈ �. (3.24)

Proof Since |mε |L1 ≤ C , Chebyshev’s inequality says that

inf
I
mε ≤ 1

|I | |m
ε |L1 for any interval I .

In particular inf
�

mε < m̄0/|�| and the inequality (3.24) holds for some x0 ∈ �.

Suppose the conclusion is false, and we choose a maximal interval Iε = (aε, bε)

in which μ(x)mε(x) > ‖μ(K + λε)‖∞ + m̄0|�| . We divide into two cases:

(i) {aε, bε} ∩ ∂� = ∅, and (ii) {aε, bε} ∩ ∂� �= ∅.

In the former case, we may choose a point yε and an open interval Iε � yε such that
(i) μ(x)mε(x) > ‖μ(K̄ + λε)‖∞ in Īε and (ii) μ(x)mε(x) attains local maximum at
a point yε ∈ Int Iε . However, uε does not have a local minimum point in Iε by the
maximum principle. It follows from (3.23) that μmε does not attain local max in Iε .
This is a contradiction.
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In the latter case, then exactly one of the boundary point (say, aε) of Iε belongs to
the boundary of �, since Iε �= �. One can extend the problem by reflecting at the
boundary point aε ∈ ∂� to obtain an interior local maximum point yε , and then argue
as in case (i) to derive a contradiction. ��
Lemma 3.11 Suppose that there is δ > 0 and sequences ε = εk → 0 and I = (a, b)
such that

mεk − K − λεk ≥ δ2 in I ,

then

mε → 0 in Cloc(I ).

Proof Fix a small η > 0, we need to show that

mε → 0 in [a + η, b − η]. (3.25)

The function uε , with ε = εk , satisfies

− εμuε
xx + |uε

x |2 ≥ δ2 in I . (3.26)

Thanks to (3.22), and that H1 ⊂ C1/2, uε → ū uniformly. It is standard to see that
the uniform limit ū is a viscosity supersolution (Barles 2013) of

{
|wx |2 = δ2 in (a, b),

w(a) = ū(a), w(b) = ū(b).
(3.27)

By the maximum principle, uε and its limit ū cannot attain a local minimum in (a, b),
so there exists x̄ ∈ [a, b] such that

ūx ≥ 0 a.e. in (a, x̄), and ūx ≤ 0 a.e. in (x̄, b). (3.28)

(We regard (a, x̄) as empty when x̄ = a and a similar convention holds for (x̄, b).)
Note that ūx ∈ L2 is defined almost everywhere.

Next, note that (3.27) has a unique viscosity solution

w(x) = min{ū(a)+ δx, ū(b)+ δ(b − x)} for x ∈ (a, b).

It follows by comparison that

ū(x) ≥ min{ū(a)+ δ(x − a), ū(b)+ δ(b − x)} for x ∈ (a, b).

Rearranging (3.23), we have

[log(μmε)]x = − (uε)x

εμ
. (3.29)
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Integrating again, we have

log
μ(x)mε(x)

μ(y)mε(y)
= −1

ε

ˆ x

y

(uε)x (z)

μ(z)
dz = −1

ε

[ˆ x

y

ūx (z)

μ(z)
dz + o(1)

]
. (3.30)

where we used uε → ū weakly in H1.
By (3.28), ūx does not change sign in (a, x̄) (resp. (x̄, b)), and it follows that

− log
μ(x)mε(x)

μ(y)mε(y)
≥ 1

ε maxμ

(ˆ x

y
ūx (z) dz + o(1)

)

= 1

ε maxμ
(ū(x)− ū(y)+ o(1)) (3.31)

for a ≤ y < x ≤ x̄ . Setting y = a, we obtain

μ(x)mε(x) ≤ C |mε |L∞ exp

(
− ū(x)− ū(a)+ o(1)

ε maxμ

)

≤ C |mε |L∞ exp

(
−δ(x − a)+ o(1)

ε maxμ

)
for x ∈ [a + η, x̄].

If x̄ = b, then we are done, if not, we argue similarly in the interval (x̄, b − η) to
obtain

μ(x)mε(x) ≤ C |mε |L∞ exp

(
−δ(b − x)+ o(1)

ε maxμ

)
for x ∈ [x̄, b − η].

Since inf μ > 0 and mε is bounded in L∞ (thanks to Lemma 3.10), we proved that
mε → 0 uniformly in each compact subset of (a, b). ��
We record the following observation from the proof of Lemma 3.11.

Corollary 3.12 Suppose |ūx |2 ≥ δ2 in (a, b) in viscosity sense, then

mε → 0 in Cloc((a, b)).

Proof of Theorem 3.5(b) Passing to a sequence, we may assume that (3.22) holds for
some λ̄ ∈ R and ū ∈ H1. It remains to prove that λ̄ is uniquely determined by´
max{K̄ + λ̄, 0} dx = m0, and that

mε(x) → max{K (x)+ λ̄, 0} uniformly as ε → 0. (3.32)

Step #1. mε → 0 in Cloc(I−), where I− = {x : K (x)+ λ̄ < 0}.
For each closed interval [a, b] ⊂ I−, choose [a′, b′] such that

[a, b] ⊂ (a′, b′) and [a′, b′] ⊆ I−.
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It follows by definition of I− that there exists δ2 > 0 such that for any 0 < ε � 1,

mε − K − λε ≥ δ2 in (a′, b′).

It follows from Lemma 3.11 that mε → 0 uniformly in compact subsets of (a′, b′),
i.e. mε → 0 uniformly in [a, b]. This proves mε → 0 in Cloc(I−).
Step #2. For each δ > 0 and η > 0, there exists ε0 = ε0(δ, η) > 0 such that for any
ε ∈ (0, ε0], the inequality

inf
I

(mε − K − λε) < δ (3.33)

holds uniformly for all interval I = (a, b) ⊂ {x : K + λ̄ ≥ −δ/2} such that
|b − a| ≥ 2η.

Suppose not, then there exist η, δ > 0 and Iε = (aε, bε) such that

Iε ⊂ {x : K + λ̄ ≥ −δ/2}, bε − aε > 2η, and inf
(aε ,bε )

(mε − K − λε) ≥ δ.

(3.34)

Without loss, we may assume that aε → a and bε → b for some a �= b, such that
a < b. Then, uε(x) → ū uniformly and ū satisfies, in viscosity sense,

|ūx |2 ≥ δ in (a, b).

By Corollary 3.12, we deduce that, as ε → 0,

mε(x) → 0 in Cloc((a, b)).

However, this contradicts with the fact that

δ

2
≤ δ + K + λε ≤ mε at x = a + b

2
∈ (aε, bε) ∩ (a, b).

This completes Step #2.
Step #3. For each δ > 0, there exists ε1 = ε1(δ) > 0 such that for any ε ∈ (0, ε1], we
have

sup
{K (x)+λ̄≥−δ/4}

(mε − K − λε) ≤ 2δ. (3.35)

Suppose not, then there exists a sequence ε = ε j → 0 and cε ∈ {K (x) + λ̄ ≥
−δ/4} such that (mε − K − λε)(cε) > δ. Since cε is uniformly bounded away from
{K (x) + λ̄ < −δ/2}, we can use the previous step to deduce that there exist δ̃,
aε < cε < bε such that

(aε, bε) ⊂ {K (x)+ λ̄ ≥ −δ/2}, bε − aε → 0
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and
⎧
⎪⎨

⎪⎩

mε − K − λε = δ at x ∈ {aε, bε},
mε − K − λε > δ in (aε, bε),

mε − K − λε > 2δ at x = cε .

Without loss of generality, we may assume that 0 < bε − aε < η, where η > 0 is
small enough such that

|μ(x)K (x)− μ(y)K (y)| < δ inf� μ

2
,

|μ(x)− μ(y)| < δ inf� μ

2(|λ̄| + δ)
whenever |x − y| < η. (3.36)

This choice yields

inf
I

[
μ(K + λ̄+ 2δ)

]
> sup

I

[
μ(K + λ̄+ δ)

]
(3.37)

for any interval I containing x of length smaller than η. Hence,

μ(cε)m
ε(cε) > μ(cε)(K (cε)+ λε + 2δ) > sup

(aε ,bε )

μ(K + λε + δ)

≥ max{μ(aε)m(aε), μ(bε)m(bε)}.

This means that μm has an interior local maximum at some c′ε ∈ (aε, bε) such that
mε − K − λε > 0 at x = c′ε . This is a contradiction with Lemma 3.9. This completes
Step #3. Combining Steps #1 and #3, we deduce that

lim sup
ε→0

mε(x) ≤ max{0, K (x)+ λ̄} uniformly in �. (3.38)

Step #4. We claim that for each δ > 0,

sup
I

(mε − K − λε) ≥ −4(1+ ‖ū‖∞)ε

δ2

for any interval I = (x0 − δ, x0 + δ) in �.
Indeed, by the uniform convergence uε → ū, we can set C2 = 1+‖ū‖∞ to ensure

that

‖uε‖∞ < C2 for all 0 < ε � 1.

Fix an arbitrary x0 and let φ = 2C2
( x−x0

δ

)2
. Then φ(x0 ± δ) = 2C2 implies that

sup
I∩�

(uε − φ) ≥ (uε − φ)(x0) > −C2.
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Note that for y ∈ ∂(I ∩�), we either have (i) y = x0 ± δ or (ii) y ∈ ∂�.
In case (i), (uε−φ)(y) < −C2. In case (ii), the outer normal derivative of uε−φ is

strictly negative since (uε)x (y) = 0. In both cases, we conclude that uε−φ has a local
maximum at some interior point yε ∈ I ∩�, where it holds that (uε)′′(yε) ≤ φ′′(yε)
and (uε)′(yε) = φ′(yε). Thus, by the first equation of (2.11),

−4C2ε

δ2
+ |4C2|2

δ4
|yε − x0|2 ≤ m(yε)− K (yε)− λε.

This implies sup(x0−δ,x0+δ)(m
ε − K − λε) ≥ − 4C2ε

δ2
. This completes Step #4.

Step #5. For each δ̃ > 0, there exists ε1 = ε1(δ̃) > 0 such that for any ε ∈ (0, ε1], we
have

inf
�

(mε − K − λε) ≥ −2δ̃. (3.39)

Suppose the claim does not hold, then there exists δ̃ > 0 and cε → c0 such that
(mε − K − λε)(cε) < −2δ̃. We may assume without loss that c0 ∈ Int� (otherwise
c0 ∈ ∂� and we may extend the problem by reflection). Hence, by Step #4, there
exists aε < cε < bε such that

bε − aε → 0 and

⎧
⎪⎨

⎪⎩

mε − K − λε = −δ̃ at x ∈ {aε, bε},
mε − K − λε < −δ̃ in (aε, bε),

mε − K − λε < −2δ̃ at x = cε .

Again, we can assume bε − aε < η for some η > 0 small enough so that

sup
I

[
μ(K + λ̄+ 2δ̃)

]
< inf

I

[
μ(K + λ̄+ δ̃)

]

holds for every interval with length smaller than η. Hence, we obtain again

μ(cε)m
ε(cε) < μ(cε)(K (cε)+ λε + 2δ̃) < inf

(aε ,bε )
μ(K + λε + δ̃)

≤ min{μ(aε)m(aε), μ(bε)m(bε)}.

This means that μm has an interior local minimum at some c′ε ∈ (aε, bε) such that
mε − K − λε < 0 at x = c′ε . This is a contradiction with Lemma 3.9. In particular,
we establish in this step that

lim inf
ε→0

mε(x) ≥ K (x)+ λ̄ uniformly in �. (3.40)

Combining (3.38) and (3.40), and the nonnegativity of mε , we prove that mε →
max{K (x)+ λ̄, 0} uniformly in �. By the integral constraint of mε , it follows that λ̄
is uniquely determined and we may conclude the proof of Theorem 3.5 as before. ��
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4 Discussion

Bynow, the ideal free distribution (IFD) (Fretwell andLucas 1969) is awell established
concept in ecological theory, and it hasmany ramifications in the evolution of dispersal
(Cosner 2014). At the basic level, the IFD is derived in a static setting as the Nash
equilibrium of the habitat selection game, and it has been demonstrated that it is an
evolutionarily stable strategy in the adaptive dynamics framework (Averill et al. 2012;
Cantrell et al. 2010). In this paper, we leverage the framework of mean field games
(MFG), introduced by Lasry and Lions recently, to give an alternative derivation of
the IFD in a dynamic setting. Mean field game (MFG) models, proposed by Lasry
and Lions (2007) and Huang et al. (2006) independently, are a set of PDEs used to
approximate an infinite number of players behaving as aNash equilibriumwith respect
to the differential game. In contrast to existingmodels where (usually two) populations
with prescribed dispersal strategies are allowed to compete (Hastings 1983; Dockery
et al. 1998; Cantrell et al. 2010), MFG grants the individual the ability to optimize
their performance as measured by a suitable payoff functional which is perturbed by
the mean field term representing the average behavior of the infinite number of agents.

4.1 Model assumptions and generalizations

An important feature in theMFG setting of this paper is that there is no birth or death in
the model, so that having zero diffusion does not mean that the population can achieve
IFD, and is therefore different from the setting in Cantrell et al. (2007). When the
parameter ε > 0 (which appears originally in the cost functional J ) is small, then the
cost of control becomes small and the drift due to control dominates over the standard
noise due to diffusion in the Fokker-Planck equation governing the population density
mT (t, x). It is this combination of large and optimal drift and a bounded diffusive
movement that together enables the ideal free distribution.

In ourmodel, the cost ofmotion is taken to be quadratic in the velocity for simplicity
and for consistency with kinetic energy. If this assumption is relaxed to a more general
form of convex function L(v) �= 1

2v
2, then it is no longer natural to work with

H1 estimates of the value function u. Nonetheless, we conjecture that an analogous
argument holds.

The choice of fitness function F(x, s) = K (x) − s can be significantly relaxed.
In general, the same conclusions hold for any fitness function F satisfying (F2) in
Section 2.1.

Regarding the fact that Theorem 3.5 requires � to be one-dimensional in case μ is
nonconstant and hence is more restrictive than Theorem 3.4, it is of course natural to
wonder whether some stronger (typically uniform) convergence might hold in higher
dimensions. At the moment, we do not know whether it is possible to strengthen the
result, as this hinges on quite involved technical aspects of ergodic mean field games.
First of all, observe that Theorem 3.4 does not give any information regarding the
convergence of the value function uε , as this would require a priori estimates that are
out of reach in higher dimensions. Second, such stronger estimates would be necessary
to obtain better convergence of mε . The underlying reason has to do with the lack of
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regularisation effect of the local coupling term F(m) = K − m; indeed, the usual
setting considered in ergodic MFG assumes that F takes values in a Hölder space
(e.g., F = F(ρ ∗ m) where ρ is a smoothing kernel), which allows one to obtain, for
instance, uniform Lipschitz regularity of uε . We refer, for instance, to Cardaliaguet
(2013), and we leave this question as an interesting problem.

The access to and use of information by the individual is critical in achieving IFD.
In this work, the individual moves according to the gradient of value function, which
is a special form of usage of full space-time information of the environment and of the
overall population dynamics. In general, this can be considered as a approximation
when each individual retains information of past realized fitness. Such information
can for example result from personal experience or can be communicated from con-
specifics.

4.2 Related work

In Bondesan et al. (2025) the evolution of size distribution in a prey-predator model
was considered. These models incorporates birth and death dynamics, while most
papers in mean field games ignore such effects, except some recent work on the mean
field games of branching processes (Claisse et al. 2023).

In Cardaliaguet et al. (2015), the MFG with degenerate parabolic operators was
considered. In their setting, a weak notion of solution is introduced for the first order
MFG, and the existence, uniqueness and stability of such weak solutions is proved via
the connection with two optimization problems. Their work naturally encompasses
the vanishing viscosity limit in a rather weak and sophisticated setting. In particular,
they demonstrated an exponential rate of convergence of the solutions to the time-
dependent problem to those of the ergodic problemwhich is uniform away from initial
and terminal time ( Cardaliaguet and Porretta (2020), Theorem 1.14). In contrast, our
main focus is the vanishing viscosity limit for classical solutions of the ergodic problem
itself (λε, uε,mε)→ (λ̄, ū, m̄). We provide conditions for uniform convergence, and
emphasize the connectionwith the game theoretical interpretation of the uniform limits
(λ̄, ū, m̄) which is its connection with the ideal free distribution of players.

In this work, we mainly considered the control of the drift of the diffusion process
governing the movement of agents. We expect that the ideal free distribution can
also arise from other modes of control (as the cost of control tends to zero), such
as the control of diffusion rate ( Fleming and Soner (2006),Chapter IV), and the
optimal switchingbetweenmovement behaviors (Pham2009,Chapter 5). Itwill also be
interesting to consider the convergence to IFDwhen the payoff function is periodically
varying in time (Cantrell and Cosner 2018; Cantrell et al. 2021); in such a case, we
expect that the population of players will converge to the state where the fitness is
equilibrated in space, but not necessarily in time.
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A Proof of Proposition 2.1

In this section, we consider the convergence of classical solutions (uT ,mT ) : [0, T ]×
�→ R

2 to the finite horizon MFG (2.10) to the solutions (λ, ū, m̄)) : �→ R
2 to the

ergodic MFG (2.11), in an average sense as T → ∞. We will assume the existence
of the respective solutions and discuss only the convergence as T → ∞. (Note that
the existence of solutions is known for any dimension if μ is constant, and for d = 1
if μ is nonconstant. For the latter case, see Section B.)

We start with the following uniform bound:

Lemma A.1 Suppose inf� m0(x) ≥ δ > 0. There exists a constant C > 0 dependent
on ‖m0‖C2(�̄) and ‖G‖C2(�̄) independent of T ≥ 1 such that

‖∇uT (0, ·)‖L2(�) ≤ C .

Proof of LemmaA.1 We proceed as in (Cardaliaguet et al. 2012,Lemma 1.6): multiply
the first equation of (2.10) by ∂tm and the second equation by ∂t u; then integrating in
space proves that

−
ˆ

μ�u∂tm+1

2

ˆ
|∇u|2∂tm+

ˆ
F(x,m)∂tm =

ˆ
�(μm)∂t u−

ˆ
m〈∇u,∇∂t u〉.

In other words,

ˆ
(−μ�u∂tm −�(μm)∂t u)+ d

dt

ˆ
1

2
|∇u|2m + d

dt

ˆ
F̃(x,m) = 0,

where F̃(x, s) = ´ s
0 F(x, t) dt . Then, defining

H(t) := −
ˆ

μm�u +
ˆ

1

2
|∇u|2m +

ˆ
F̃(x,m)

we deduce that H(t) is constant in t . In particular,

H(0) = H(T ) (A.1)

Next, using the estimate F̃(x,m) ≤ (sup�×[0,∞) F)m (which follows from m �→
F(x,m) being decreasing, so that sup�×[0,∞) F = sup� F(·, 0) is finite), we deduce

ˆ
�

F̃(x,m) dx ≤ (sup F)

ˆ
�

m dx = (sup F)m̄0 for any t ∈ [0, T ],

where we used
´
�
m(t, x) dx = ´

�
m0 dx = m̄0 for all t . Hence,

H(T ) ≤ m̄0‖G‖C2‖μ‖L∞ +
‖G‖2

C1

2
+ (sup F)m̄0.
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On the other hand,

H(0) ≥ −
ˆ

�(μm0)u(0, ·) dx + 1

2

ˆ
|∇u(0, ·)|2m0 dx − sup

x∈�

|F̃(x,m0(x))|.

Since inf� m0 dx ≥ δ, We thus deduce that

ˆ
|∇u(0, ·)|2 dx ≤ A + B

ˆ
�(μm0)u(0, ·) dx (A.2)

for two constants A, B that do not depend on T . Finally, observe that

ˆ
�(μm0)u(0, ·) dx =

ˆ
�(μm0)(u(0, ·)−

 
u(0, ·)) dx

≤ ‖�(μm0)‖L2‖u(0, ·)−
 

u(0, ·)‖L2

≤ C‖∇u(0, ·)‖L2 , (A.3)

where we used
´
�

�(μm0) dx = 0 due to the no-flux boundary condition for the first
equality, and Poincaré’s inequality for the last inequality. Combining (A.2) and (A.3),
we deduce that

‖∇u(0, ·)‖2L2 ≤ A + BC‖∇u(0, ·)‖L2 .

This proves the boundedness of ‖∇u(0, ·)‖L2 . ��
Next, we recall the following special identity.

Lemma A.2 It holds that

1

2

¨
(mT + m̄)|∇uT −∇ū|2 dxdt −

¨
(F(x,mT )− F(x, m̄))η dxdt

=
ˆ

�

(v(0, ·)η(0, ·)− v(T , ·)η(T , ·)) dx . (A.4)

where v := uT − u, η := mT − m.

Proof Using the notation v := uT − u, η := mT − m, we have the system

⎧
⎪⎨

⎪⎩

−λ− ∂tv − μ�v + 1
2 (|∇uT |2 − |∇u|2) = −F(x,mT )+ F(x,m) ,

∂tη −�(μη) = ∇ · (mT∇uT )−∇ · (m∇u)

v(T , ·) = � − u, and η(0, ·) = m0 − m.

(A.5)

Next, we multiply the first equation by η = mT − m̄ and the second equation by
v = uT − ū, integrate by parts and subtract the result to obtain (the terms containing
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mT and m̄ are separated in the second equality)

−
¨

(F(x,mT )− F(x, m̄))η dxdt +
ˆ

(v(T , ·)η(0, ·)− v(0, ·)η(0, ·)) dx

=
¨ |∇uT |2 − |∇u|2

2
(mT − m) dtdx

−
¨
〈∇v,∇uT 〉mT dtdx +

¨
〈∇v,∇u〉m dtdx

=
¨ [

〈∇v,
∇uT + ∇ū

2
〉 − 〈∇v,∇uT 〉

]
mT

−
¨ [

〈∇v,
∇uT +∇ū

2
〉 − 〈∇v,∇ū〉

]
m̄

= 1

2

¨
〈∇v,−∇v〉mT − 1

2

¨
〈∇v,∇v〉m̄

= −1

2

¨
|∇v|2(mT + m̄).

This proves the lemma. ��
Corollary A.3 The ergodic problem (2.11) has at most one classical solution.

Proof For i = 1, 2, let (λ̄i , ūi , m̄i ) be two solutions to (2.11). Similar as above, one
can prove

1

2

ˆ
(m̄2 + m̄1)|∇ū2 − ∇ū1|2 dx −

ˆ
(F(x, m̄2)− F(x, m̄1))(m̄2 − m̄1) dx = 0.

Since s �→ F(x, s) is strictly decreasing, it follows that

(∇ū2, m̄1) ≡ (∇ū1, m̄1).

Since we normalize so that
´
�
(ū2 − ū1) dx = 0, we conclude that ū2 − ū1 ≡ 0. ��

Lemma A.4 Let v := uT − u, η := mT − m, then

∣∣∣∣

ˆ
v(0, ·)η(0, ·) dx

∣∣∣∣+
∣∣∣∣

ˆ
v(T , ·)η(T , ·) dx

∣∣∣∣ ≤ C ′.

Proof Using
´
�

η(t, ·) dx = 0 for all t and Poincaré’s inequality, we have

∣∣∣∣

ˆ
v(0, ·)η(0, ·) dx

∣∣∣∣ =
∣∣∣∣

ˆ
(v(0, ·)−

 
v(0, ·))η(0, ·) dx

∣∣∣∣

≤ C‖m0 − m̄‖L2(�)‖∇v(0, ·)‖L2(�).
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It then follows from Lemma A.1 that
∣∣∣∣

ˆ
v(0, ·)η(0, ·)

∣∣∣∣ ≤ C‖m0 − m̄‖L2(�)‖∇u(0, ·)− ∇ū‖L2(�) ≤ C ′,

for some constant C ′ independent of time.
Next, we observe that |v(T , ·)η(T , ·)| ≤ |v(T , ·)|mT (T , ·)+|v(T , ·)|m̄(·). Hence,

∣∣∣∣

ˆ
v(T , ·)η(T , ·) dx

∣∣∣∣ ≤ C(

ˆ
mT (T , ·) dx +

ˆ
m̄ dx) ≤ 2Cm̄0,

since v(T , ·) = G − ū is bounded uniformly in L∞(�). ��
Proof of Proposition 2.1(a) Using the identity (A.4) and Lemma A.4, we obtain

1

2

¨
(mT + m̄)|∇v|2 dtdx −

¨
(F(x,mT )− F(x, m̄))(mT − m̄) dtdx ≤ C ′.

(A.6)

Using inf m̄ > 0 and that s �→ F(x, s) is decreasing (thanks to (F1)), (2.14) and
(2.15) follow by the change of variable s = t/T . ��
Proof of Proposition 2.1(b) Next, assume (F2), then it follows from (2.14) and (2.15)
that

‖νT − m̄‖L2((0,1)×�) + ‖∇θT −∇ū‖L2((0,1)×�) ≤
C

T
as T →∞. (A.7)

This proves (2.16).
Next, we claim that

‖F(x, νT (s, x))− F(x, m̄(x))‖L1([0,1]×�) → 0. (A.8)

Indeed, by (F2), there exists δ > 0 such that

δ(s′ − s) ≤ F(x, s)− F(x, s′) ≤ 1

δ
(s′ − s) for x ∈ �, 0 ≤ s ≤ s′ ≤ 2‖m̄‖∞.

Then from (A.6) and the fact that (F(x, s′)− F(x, s))(s′ − s) ≤ 0, we have

C

T
≥
¨
[0,1]×�

∣∣∣(F(x, νT )− F(x, m̄))(νT − m̄)

∣∣∣ dxds

≥ ‖m̄‖∞
¨
{νT≥2‖m̄‖∞}

|F(x, νT )− F(x, m̄)| dxdt

+ c′
¨
{νT <2‖m̄‖∞}

|νT − m̄| dxdt .
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Therefore,

‖F(x, νT )− F(x, m̄)‖L1([0,1]×�)

≤
¨
{νT≥2‖m̄‖∞}

|F(x, νT )− F(x, m̄)| dxdt

+
¨
{νT <2‖m̄‖∞}

|F(x, νT )− F(x, m̄)| dxdt

≤
¨
{νT≥2‖m̄‖∞}

|F(x, νT )− F(x, m̄)| dxdt + 1

δ

¨
{νT <2‖m̄‖∞}

|νT − m̄| dxdt

≤ C

T

(
1

‖m̄‖∞ + 1

δc′

)
.

This proves (A.8).
Next, integrate (2.11) over � to get

λ̄+
 

�

〈∇μ,∇ū〉 dx + 1

2

 
�

|∇ū|2 dx +
 

�

F(x, m̄) dx = 0. (A.9)

Similarly, we integrate (2.10) over [0, t] × �, and change variables θT (s, x) =
uT (sT , x) to get

1

T

( 
�

θT (s, ·) dx −
 

�

G dx

)

= −
ˆ 1

s

 
�

〈∇μ,∇θT 〉 dxds − 1

2

ˆ 1

s

 
�

|∇θT |2 dxds −
ˆ 1

s

 
�

F(x, νT ) dxds.

(A.10)

It follows from (A.7) to (A.10) that

lim
T→∞

1

T

 
�

θT (s, x) dx = (1− s)

[ 
�

〈∇μ,∇ū〉 dx − 1

2

 
�

|∇ū|2 dx −
 

�

F(x, m̄) dx

]

= (1− s)λ̄ (A.11)

uniformly for s ∈ [0, 1]. Using Poincaré’s inequality, it follows that

¨
[0,1]×�

∣∣∣∣θ
T −

 
�

θT (s, ·) dx − ū

∣∣∣∣

2

dxdt ≤ C
¨
[0,1]×�

∣∣∣∇θT − ū
∣∣∣
2
dxdt → 0.

(A.12)

The convergence of 1
T θT (s, x) to (1− s)λ̄ in L2([0, 1] ×�)) follows by combining

(A.11) and (A.12). ��
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B Existence Results

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̄− μ�ū + H(x,∇ū) = V [m] in �,

−�(μm̄)− div(m̄DpH(x,∇ū)) = 0 in �,´
�
m̄ dx = m0, and

´
�
ū dx = 0,

∂ν(μm̄) = 0 = ∂ν ū on ∂�.

(B.1)

Wewill prove the existence of classical solution (λ̄, ū, m̄) ∈ R×C2+α(�̄)×W 1,2(�)

under the following hypotheses:

(H1) � is a bounded smooth domain in Rd and μ ∈ C3(�) satisfies inf� μ > 0.
(H2) For each p > d, there exists α ∈ (0, 1) such that

V [m] ∈ Cα(�) for every m ∈ W 1,p(�), (B.2)

and there exists K ∈ Cα(�) such that

− K (x) ≤ V [m] ≤ m(x)− K (x) for all m ∈ W 1,p(�) ∩ P(�). (B.3)

Moreover, for each k ∈ N, and mn,m ∈ (W 1,p(�) ∩ P(�))

‖mn − m‖∞ → 0  ⇒ ‖min{k, V [mn]} −min{k, V [m]}‖∞ → 0 (B.4)

(H3) For some α ∈ (0, 1), H ∈ Cα
loc(�× R

d) and for some Ai > 0

A1(|p|2 − 1) ≤ H(x, p) ≤ A2(|p|2 + 1) and |DpH(x, p)|2 ≤ A3 + A4H(x, p))

(H4) d = 1, i.e. � = (0, 1).

Remark B.1 In application, we take μ̄(x) = εμ(x) and H(x, p) = |p|2.

B.1 Apriori estimates for the ergodic problem

Lemma B.2 Assume (H1) - (H3). Suppose (λ̄, ū, m̄) ∈ R× C2+α(�̄)×W 1,p(�) (for
some p > d) is a solution of (B.1), then

λ̄ ≥ − sup
�

H(·, 0)− sup
�

K and λ̄

ˆ
�

1

μ
dx +

ˆ
�

H(x,∇ū)

μ
dx ≤ m0

inf
�

μ
,

(B.5)

In particular,

|λ̄| + A1

ˆ
�

|∇ū|2 dx ≤ A1 + ‖H(·, 0)‖∞ + ‖K‖∞ +
m0 sup

�

μ

inf
�

μ
(B.6)
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Furthermore, there exists C0 = C0(m0, inf
�

μ, sup
�

μ) such that

ˆ
�

|log∇(μm̄)|2 dx ≤ C0. (B.7)

Remark B.3 If we replace μ by εμ and take H(x, p) = |p|2, then we have

|λ̄| +
ˆ

�

|∇ū|2 dx ≤ ‖H(·, 0)‖∞ + ‖K‖∞ +
m0 sup

�

μ

inf
�

μ
. (B.8)

Note that |λ̄| and ‖∇ū‖L2 are bounded uniformly in ε > 0.

Proof First, we prove the lower bound of λ̄ by the idea in (Lou and Ni 1999,Lemma
2.1). Let x0 be the global minimum point of ū, we claim that

λ̄+ H(x0,∇ū(x0)) ≥ m̄(x0)− K (x0). (B.9)

If x0 ∈ �, then (B.9) follows from classical maximum principle. Suppose x0 ∈ ∂�

and that (B.9) does not hold, then it follows by continuity that there is a neighborhood
O of x0 in �̄ such that −�ū > 0 in O. By Hopf’s lemma, it follows that ∂ν ū < 0.
This is impossible since ū satisfies the homogeneous Neumann boundary condition.
Hence, (B.9) holds. It follows from (B.9) and the fact that ∇ū(x0) = 0 (using the
Neumann boundary condition again if x0 ∈ ∂�) that λ ≥ − sup� H(·, 0) − K (x0).
This proves the lower bound in (B.5).

For the upper bound of λ̄, we divide the first equation of (B.1) byμ(x) and integrate
to obtain (using K (x) ≥ 0 and the homogeneous Neumann boundary condition)

ˆ
�

1

μ

(
λ̄+ H(x,∇ū)

)
dx ≤

ˆ
�

m̄

μ
dx ≤

´
�
m̄ dx

inf μ
. (B.10)

The upper bound in (B.5) follows.
It remains to prove (B.7). To this end, we divide the second equation of (B.1) by

μm̄, and integrate by parts to get

ˆ
�

|∇ log(μm̄)|2 dx =
ˆ

�

1

μm̄
�(μm̄) dx

=
ˆ

m̄DpH(x,∇ū) · ∇( 1
μm̄ ) dx

=
ˆ

�

1
μ
DpH(x,∇ū) · ∇ log(μm̄) dx

≤ 1

2

ˆ
�

|∇ log(μm̄)|2 dx + 1

2(inf μ)2

ˆ
�

|DpH(x,∇ū)|2 dx .
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Hence,

ˆ
�

|∇ log(μm̄)|2 dx ≤ 1

(inf μ)2

ˆ
�

|DpH(x,∇ū)|2 dx ≤ C(1+
ˆ

�

H(x,∇ū) dx)

where we used (H3). Combining with (B.10), we obtain (B.7) ��
Lemma B.4 Assume (H1) -(H3) and assume � = (0, 1). Let (λ̄, ū, m̄) ∈ R ×
C2+1/2([0, 1])×W 1,2([0, 1]) be a solution of (B.1), then there are constants C1 > 0
depending on sup[0,1] K, inf [0,1] μ and ‖μ‖C2+1/2([0,1]) such that

|λ̄| + ‖m̄‖W 1,2(�) + ‖ū‖W 2,∞(�̄) ≤ C1, (B.11)

Proof The bound for |λ̄| (B.11) is due to Lemma (B.2).
Next, we estimate ‖m̄‖∞.

| log m̄(x1)− log m̄(x2)| ≤
ˆ x2

x1
|(log m̄)x | dx ≤ ‖(log m̄)x‖L2([0,1])|x1 − x2|1/2.

(B.12)

Note that ‖(log m̄)x‖L2([0,1]) is bounded, by (B.7). Thanks to (B.12), the Harnack
inequality holds for m, i.e. there is a constant C ′ such that

sup
[0,1]

m̄ ≤ C ′ inf[0,1] m̄. (B.13)

Since the left hand side is bounded from above by C ′
´
�
m̄ = C ′m0, we deduce that

m̄ is bounded uniformly.
Next, we estimate ‖ū‖∞. To this end, let x0 be the maximum point of |ūx |2, then

by the first equation of (B.1),

A1|ūx (x0)| − A2 ≤ H(x0, ūx (x0))+ λ̄ ≤ V [m] ≤ m̄(x0)− K̄ (x0) ≤ C ′′

where we used hypothesis (H3) for the first inequality, ūxx (x0) ≤ 0 for the second
one, and (H2) for the next to last one. Thus ‖ūx‖∞ is bounded. By multiplying the
equation of m̄ by μm̄ and integrating by parts, it follows from ( Bardi and Feleqi
(2016), Lemma 2.3) that

‖μm̄‖W 1,2(�) ≤ C(1+ ‖ūx‖∞). (B.14)

We supply the proof of (B.14) for the convenience of the reader. Indeed, for any
ϕ ∈ C(�̄) satisfying the Neumann boundary condition, the definition of m̄ as weak
solution implies

ˆ 1

0
[(μm̄)x + m̄DpH(x, (x, ūx ))]ϕx dx = 0.
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Hence,

∣∣∣∣

ˆ 1

0
(μm̄)xϕx dx

∣∣∣∣ =
∣∣∣∣

ˆ 1

0
m̄DpH(x, ūx )ϕx dx

∣∣∣∣

≤ C
ˆ 1

0
m̄(1+ |ūx |)|ϕx | dx ≤ C

inf μ
(1+ ‖ūx‖∞)‖μm̄‖2‖ϕx‖2.

This implies that ‖(μm̄)x‖2 ≤ C‖ūx‖∞. Combining with (B.13), we obtain (B.14).
Since inf μ > 0 and μ ∈ C2(�̄), we also obtain the bound for ‖m̄‖W 1,2([0,1]).

Finally, because we are in one-spatial dimension, it follows that

‖m̄‖C1/2([0,1]) ≤ C‖m̄‖W 1,2([0,1]) ≤ C .

We can then deduce from the first equation of (B.1) that ‖ūxx‖∞ ≤ C . Combining
with the bound for ‖ū‖∞, we obtain the bound for ‖ū‖W 2,∞([0,1]). ��
Next, we prove the existence of classical solution to (B.1)

Theorem B.5 Assume (H1)-(H3) and suppose � = (0, 1). Then the following hold.

(i) There exists at least one solution (λ̄, ū, m̄) ∈ C2+1/2([0, 1])×W 1,2([0, 1]) to the
ergodic MFG system (B.1).

(ii) The set of solutions are uniformly bounded in R×W 2,∞([0, 1])×W 1,2([0, 1]).
(iii) The solution (λ̄, ū, m̄) is unique provided the Lasry-Lions condition holds:

ˆ
�

(V [m] − V [m̃])(m − m̃) dx > 0 if m, m̃ ∈ W 1,2([0, 1]) and m �= m̃.

Proof The assertion (ii) is a consequence of Lemma B.4.
The assertion (iii) is well known. (Multiply the equation of (u1−u2) by (m1−m2)

and vice versa.)
Next, we prove assertion (i) regarding the existence of solution (ū, m̄) to (B.1) with

V [m(·)].We proceed by approximation. For each k ∈ N, we apply the existence results
of Bardi and Feleqi (2016) to the problem (B.1) with Vk[m] = min{k, V [m]}. To this
end, we verify the following two conditions (which correspond to the conditions (B.7)
and (B.32) therein) holds:

∀mn,m ∈ (W 1,p(�) ∩ P(�)), ‖mn − m‖∞ → 0  ⇒ ‖Vk[mn] − Vk[m]‖∞ → 0

(thanks to (B.4)) and

sup
m∈(W 1,p(�)∩P(�))

‖Vk[m]‖∞ <∞.

Hence, by (Bardi and Feleqi 2016, Theorem 2.6) (see Theorem B.6 below), there
exists (λ̄k, ūk, m̄k) ∈ R × C2+1/2([0, 1]) × W 1,2([0, 1]) which solves (B.1) with
Vk[m] = min{k, V [m]}.
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By Lemma B.4, {(λ̄k, ūk, m̄k)}∞k=1 is bounded uniformly in R × W 2,∞ × W 1,2.
Passing to a subsequence, we have

λ̄k → λ̄, ūk⇀ū in W 2,2([0, 1]) and m̄k⇀m̄ in W 1,2([0, 1]),

and that (λ̄, ū, m̄) ∈ R × W 2,2([0, 1]) × W 1,2([0, 1]) is a solution to (B.1). Finally,
m̄ ∈ C1/2([0, 1]) by Sobolev embedding, and ū ∈ C2,1/2([0, 1]) by the first equation
of (B.1). ��

B.2 Existence results from Bardi et al.

For completeness, we state some existence results due to Bardi and Feleqi (2016) for
the ergodic problem (B.1).

Theorem B.6 (Bardi and Feleqi (2016), Theorem 2.6) Suppose V [m] verifies

∀mn,m ∈ (W 1,p(�) ∩ P(�)), ‖mn − m‖∞ → 0  ⇒ ‖V [mn] − V [m]‖∞ → 0 (B.15)

and

sup
m∈(W 1,p(�)∩P(�))

‖V [m]‖∞ <∞. (B.16)

and that H satisfies the natural growth condition

(C2*) For some α ∈ (0, 1),

|H(p)| ≤ C1|p|2 + C2 for all p ∈ R
d .

There exist ū ∈ C2,α(�), m ∈ W 1,p(�), for all 1 ≤ p <∞, which solve (B.1).
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